Lecture 3 of Analysis of Algorithms: Exercises

1. Draw the search tree that we get if we insert the following values in this order into an initially empty binary search tree: $5,8,11,6,3,1,17,2,7$.
2. Now remove 5 , what does the search tree look like after the deletion?
3. What is the maximum number of values that can be stored in a binary search tree of height h (expressed as a function of h)?
4. What is the minimum number of values that can be stored in a binary search tree of height h (expressed as a function of h)?
5. Write a recursive method that takes the root of a binary search tree and stores in each node the height of that node. How much time does your method take, in $\Theta(.$.$) -notation, if the$ tree stores n values?
6. Draw the AVL tree that results when we insert the following values: $6,16,11,15,14,13,12$.
7. Now delete 15 from the AVL-tree you obtained and draw the resulting AVL-tree.
8. Suppose we want to store a multi-set, a set where each value can be present multiple times. For example, $\{2,3,3,3,7,9,9\}$ is a multi-set. If we delete 3 , the resulting set still has two occurrences of 3 .
Suppose we want to store a multi-set with n values in an AVL-tree in such a way that insert, delete and search operations take $O(\log m)$ time, where $m \leq n$ is the number of different values in the multi-set. Suggest how to adapt the AVL-tree, and verify that this time bound for the operations can be attained.
9. Write pseudo-code that takes the root of a binary search tree and two values x and y, and reports all values stored in the tree whose value lies between x and y.
